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Experimental Analysis of Diversification Effect on Stock Portfolios

Abstract

In the present work we analyze the relationship between risk and individual investors’ stock portfolios when shares are

chosen from a naive strategy. Following Chance, Skynkevich & Yang (2011) procedure, participants have successively

chosen shares to compound their individual portfolio. We have found negative exponential relationship between risk and the

number of shares in portfolios. The negative exponential relation occurs in average, but not for most of individuals, who

“undiversify” when adding shares. Few shares only diversify a portfolio in a wide sample, and it may not apply to every

person.

1. Introduction 

How  many shares  are  needed  to  keep  a  portfolio  diversified?  It  is  important  to  assertively  comprehend  the

diversification mechanism, once it  is  known that  investors  who own higher  risk portfolios  expect  higher  returns  than

traditional  investors.  It  is  then  relevant  to  understand  this  mechanism and  characterize  the  relation  between  risk  and

portfolio size, given its importance and utility. Evans & Archer (1968), Fisher & Loire (1970), Elton & Gruber (1977),

among others, suggest that up to 20 assets may let a portfolio well diversified. However, there are studies suggesting greater

amount of assets for a well diversified portfolio (e.g. Statman (1987), Byrne & Lee (2000), Lee (2005), Bennet & Sias

(2011)).

During the selection of assets that will compose the portfolio, as in most of complex tasks, a simple rule may be

considered  for  this  allocation.  One  of  those  simple  rules  is  named  naive  diversification  (
1
n ).  According  to  the

diversification heuristic (BENARTZI & THALER, 2001), some agents have uniformly distributed their resources within the

investment options. Throughout this work, the term “naive” and its derivatives are used to represent the means by which

shares are chosen by individuals. In this sense, “naive” refers to the selection with no analysis or methodology. The term

“random”, in turn, usually refers to shares selected by a random number generator.

Towards the context of investment portfolio formation, portfolio diversification, and the use of naive strategy for

choosing shares, we have investigated the relation between risk and the number of shares in a portfolio for the individual

investor when the naive strategy is used on forming investment portfolios. The methodology of Chance, Shynkevich &

Yang (2011) was employed, in which experiments were set forth to investigate if the relation between portfolio risk and
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number of assets is exponentially negative.  We extend Chance, Shynkevich & Yang (2011) work by drawing extended

analysis.

2. Portfolios diversification 

Starting from the traditional risk measurement in portfolios (MARKOWITZ, 1952), we know that: 
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Where i≠ j . 

While assets are added and reallocated maintaining equal weightings, n raises. The limit of s² p(n) is considered to

obtain: 
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As  the  number  of  shares  increase,  the  contribution  of  variance  terms  decreases,  remaining  only  the  mean

covariance. Thus, the portfolio variance converges to the mean variance. The issue regarding these usually common results

occurs from the fact that this convergence is a characteristic of large samples. The law of large numbers will be applied and

the mean variance and covariance will not differ too much from a portfolio to another. However, for a short sample, such as

a  portfolio  chosen  by a  unique  investor,  the  law of  large  numbers  would  not  be  applicable.  The mean variance  and

covariance are n functions, that is, si²(n) and sij(n), so that the used general properties of the limit do not apply. In fact, it is

not possible to evaluate the general limit, once the relation between mean variance or covariance and n will vary of n for

n+1 assets. 

Being the relation between portfolio risk and its asset numbers supposedly asymptotic, it is not possible to define

an inferior risk limit while asset units may be added. Besides, prior researches focus on cases when the portfolio is equally

weighed, that is, allocates assets in a stock portfolio in the same proportion. In practice, real investors may utilize other

ponderation schemes. The capital market theory emphasizes great ponderation schemes that minimize risk for a given level

of expected return. 

Therefore, the risk in a portfolio depends on the proportion of individual shares, its variances and covariances. For

cases when assets are related randomly and combined in equal proportions in the portfolio, the risk declines when the

number of different assets increases in the portfolio. But after all, how many shares diversify a portfolio? Evan and Archer

(1968), for example, have concluded that approximately 10 shares well diversify the portfolio and their result has been

widely cited. Statman (1987), in a comprehensive analysis on the theme, relates results that are in accordance to Evans and

Archer (1968), with suggested portfolios containing not less than 8 shares and not more than 16.

Elton & Gruber (1977) have investigated the relation between risk and the number of assets in a portfolio, and

presented an analytics solution for it. Their results show that 51% of the portfolio’s standard deviation is limited after the

increment from 1 to 10 assets. Adding ten more assets, (meaning, increasing from 10 to 20), only 5% of standard deviation

is reduced. The addition of 10 more (meaning, from 20 to 30) there is a 2% reduction in the standard deviation. It is notable

that the diversification effect diminishes when the number of assets increases.

Newbould & Poon (1993) have researched for a number of texts produced in the USA and academic studies that

would affirm that a portfolio containing from 8 to 20 shares would be a diversified portfolio; Fisher & Lorie (1970) have

concluded that the potential for risk reduction through the increase of portfolio quickly exhausts – they have noted that
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around 80% of risk reduction potential is reached by a portfolio composed by 8 assets; Bloomfield et al (1977) have found

that a portfolio with 20 assets reaches a wide fraction of the total benefits.   

On Lee’s studies  (2005),  the  number of  assets  that  should be kept  for  reaching a  good diversification in  the

portfolio of security assets is a puzzle, since the estimated number is considerably higher than the numbers seen in current

portfolios.  Basing on Statman’s point  of  view (1987),  applied to the United Kingdom, it  was found that  the marginal

benefits of security portfolios are so small that investors are, probably, conscious of owning a small portfolio, at least as the

reduction of standard deviation. Due to high costs related to the management of a security portfolio, the investors might be

acting rationally by keeping a low number of assets.

Few authors have been alerting on the traps of a precipitate conclusion when interpreting risk diagrams and the size

of the portfolio. In particular, Tole (1982) highlights the misrepresentation nature of the “mean effect”. He disagrees on the

used technique of the portfolio size against a “mean” measure of non-systematic risk, aiming to determine the adequate

levels of diversification. For him, despite this mean calculation effect statistically foresees regressions relatively simple, its

applications may be deceptive to investors who base themselves in studies like that. He has shown, also, that the adequate

measurement of diversification does not come from the regression line, but from the dispersion around that line.  

Byrne & Lee (2000) have reported similar results for real estate portfolios in the United Kingdom, from the risk

analysis of a wide sample, with data from 1981 to 1996. Their goal was to debate on the advantages of developed portfolios

in relation to the risk levels in security portfolios, with empiric evidence based on real portfolios. Results show that all that

can be said is that large portfolios, in average, tend to have lower risk than small portfolios. Within their results, Byrne &

Lee (2000) affirmed that, despite the mean risk to decrease rapidly, the variability around the average decreases in a much

lower rate. Authors have concluded that the individual investor who follows the rule based on results of medium portfolios

may expose themselves to a higher risk that what is intended; and that the recommendations of around 20 to 40 assets to

diversify a portfolio would seem an underestimation of the real number of needed assets.

The fact that almost non-systematic risk is eliminated when the portfolio has among 10 to 100 assets does not show

much significance when presented by itself. Following other approaches, diversification must be developed while marginal

benefits exceed the costs. Benefits are risk reduction; costs are transaction costs.  The usual  argument that justifies the

limited diversification is the fact that the marginal costs increase faster than the benefits.

An example is the work of Statman (1987), who assumed that the investor chooses randomly the assets to form his

portfolio with different numbers of assets, but with identical expected returns. Ibbotson Associates’ results were used on the

risk  prize  in  the  case  of  “reference  portfolio”,  the  500  S&P index,  with  different  weights.  It  was  assumed  that  the

maintenance  cost  for  equal  weights  is  the  same that  for  cases  in  where the  ponderation is  different.  For  him,  a  well
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diversified portfolio of assets  randomly chosen must include at  least  30 assets for  an interested investor and 40 for a

borrower. This idea contradicts what is widely accepted, that is, the diversification benefits are virtually depleted when the

portfolio has approximately 10 assets. Besides, individual observations show that people do not keep healthy portfolios.

Mayshar (1979) has developed a model punctuating that the best to be done is to limit the diversification in the

presence of transaction costs. The author shows that, contrary than results obtained up to that moment, transaction fixed

costs relatively small may actually result in a substantial restriction in the number of acquired shares. And concludes that

transaction and administrative costs do matter, once its assimilation in a simple market model has resulted in substantially

different implications from what was obtained from standard-models, where these costs did not exist. Considering that the

diversification process has a cost, it is highlighted that the brokerage expenses are inversely proportional to the volumes

negotiated. Thus, transaction costs justify the fact that investors have a limited number of shares.

Sanvicente & Bellato (2004) have enumerated other results regarding the number of assets necessary to form a

diversified portfolio. Brito & Sancovschi (1980) have certified through daily stock quotations negotiated in Rio de Janeiro

Stock Exchange (between 1973 and 1979) that the greatest part of diversification gains may be obtained with a portfolio

containing 8 shares, and that for portfolios with more than 15 shares, benefits are almost despicable. 

Sanvicente & Bellato (2004) have determined the number of shares necessary to make a diversified portfolio for

the Brazilian Stock Market, considering transaction costs of an imperfect capital market. The difference between bid-ask

spreads for institutional and individual investors, as Statman did. It was noticed that his result has not differed much from

prior Brazilian results. Despite considering market imperfections, this effect was compensated by the high transaction costs

from the Brazilian capital market. He has inferred that in the Brazilian capital market a small diversification of portfolios

would be done due to transaction costs. If such costs decrease, the Brazilian result would be closer to the North American.

Consequently,  it  is  possible  the  Brazilian  investors  would  be  suffering  regulamentary  interventions,  besides  forming

portfolios beyond a great level of diversification.

Still considering Statman’s methodology (1987), the work from Oliveira & Paula (2008), which had as objective

determining the number of shares that could diversify Bovespa portfolios of home brokers. This number is found matching

the benefit if including one more asset into the portfolio. For that, the benefit was calculated similar to Statman (1987) and

the cost was calculated by an original methodology, based on the ponderation of cost function of home brokers by the

volume negotiated by each of them. The result was 12.       

Bennet & Sias (2011) have enlightened misunderstandings regarding the non-systematic risk diversification. They

affirm  that  there  are  no  evidences  that  investors  may or  were  already capable  of  forming portfolios  with  negligible

exposition for systematic returns. As the well diversified portfolios are the base under which most of the financial theory is
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built, the incapacity of investors in forming it helps on explaining the persistence of anomalies and the possibility of asset

price bubbles. Considering that results from Evans & Archer (1968) have become conventional acknowledgement, Bennett

& Sias (2011) have disagreed from it. Instead of supporting portfolios of 20 (or 30, or 50) assets are well diversified, they

have demonstrated that portfolios with up to 200 (or 3000, or 500) assets have substantial non-systematic risk, that is, the

uncertainty not negligible on returns of a specific company. 

The explanation for this difference is simple – in most part it results from an ordinary interpretation. It commonly

divides de total risk into systematic and non-systematic components. As a result, despite being labeled, the non-systematic

risk is not shown. While the variance of the total return is the sum of variations of systematic and non-systematic return, the

standard deviation of a portfolio is not the sum of its systematic and non-systematic standard deviations. The non-systematic

risk is  not equal to the difference between the standard deviation of the total return and the standard deviation of the

systematic return. 

Conventional  knowledge  and  several  didactic  books  on  finance  affirm  that  investors  may  easily  form  well

diversified  portfolios  with a  relatively low number of  assets  –  estimations vary from 8 to  30 shares,  although recent

estimations  suggest  at  least  50  shares.  However,  for  Bennett  &  Sias  (2011),  conventional  knowledge  is  wrong.  By

definition, a portfolio is well diversified only when the investor is sure that the non-systematic return will be significantly

different than zero or, equivalently, when the uncertainty about the non-systematic return is approximately zero. There are

no evidences that investors may, or have been capable of, forming these portfolios. 

Campbell  et  al  (2011)  examine how the  diversification  process  has  changed  throughout  time,  observing  that

correlations have decreased, what suggests that diversification may be reached with less shares, but the idiosyncratic risk

has been increased throughout time, being easier to diversify with a small amount of unities. For Chance, Shynkevich &

Yang  (2011),  there  is  a  vast  literature  that  describes  the  known  exponential  decline,  leading  to  the  conclusion  that

diversification passes fast. 

3. Methodology and discussion

Following Chance, Shynkevich & Yang (2011), we have conducted an experiment counting with the participation

of 126 UFRN undergraduate students. Among them, 49.21% are male, 7.14% have experience with the stock market and

70.63% have a professional experience (in any area). The interviewed participants are students who have been through

finance. The research tool was a questionnaire composed by closed questions. Its goal was to collect descriptive information

(if the participant had experience in the stock market,  for example), and preferential (what shares he would choose to

compose his portfolios). The questionnaires were applied in the classrooms of UFRN’s Management course in May 2012
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and each last, in average, twenty minutes per group. The questionnaire was filled after a short explanation about risk and the

number of shares in a portfolio.

A material about the relation between risk and the number of shares was presented to the students, including the

graphic  presentation  of  this  function,  of  exponential  and  declining format.  After  it,  it  was  explained  that  they would

participate on an experiment to verify if these results would stand for the mean portfolio of the class. The worksheet created

had a menu listing all shares negotiated in BM&FBOVESPA from the five past years. Students were instructed to fill up the

list, which had only the names of shares in alphabetical order, with no financial information.

They were also informed that the risk of the first asset chosen would be the average of all standard deviations of

portfolios composed by only one asset, and the same procedure would be used to portfolios composed by two units, three

shares, and so on until 30 shares. Their only task was to choose shares that they wanted in their portfolios. It was said that

no financial analysis would be necessary, and that they should not work in teams, to avoid any bias. Considering the simple

task and the small return to participants, there was a strong disincentive for doing any type of analysis.  For comparison, a

simulation was also done, synthesized by the R software, that selected 126 vectors (each one composed by 30 shares chosen

randomly). As each vector corresponds to one participant (virtual), each real participant may be compared to a hypothetic

and random investor (component of the control group) facing the same opportunity of historic data. Returns and dispersion

measures were taken based on Bloomberg data. 

Figure 1 shows the standard deviation of daily returns of the sample in relation to the number of assets, both for

participants and for the random portfolios. The horizontal line represents the risk of BOVESPA index that was taken as a

proxy for all universe of available assets, if not the market portfolio. The known exponential decline of the relation risk and

number  of  assets  is  evident  for  both  participants  and  random portfolios  and  represents,  in  this  case,  the  behavior  of

diversified  risk.  While  the  addition  of  assets  for  portfolios  greater  that  20  contribute  a  little  for  risk  reduction,  it  is

interesting to observe that the risk of a 30-shares portfolio is for both groups beyond the market risk.

 For  this  database,  the  relation  of  random  portfolios  is  lower  than  the  participants’,  what  indicate  a  lower

diversifying risk in the composition of random portfolios, for any size. The horizontal line is the standard deviation from

BOVESPA index, representing the systematic  risk.  The total  risk would be represented by the sum of systematic  and

diversifying risks. Thus, the total risk of the portfolio of participants is higher than the risk of random portfolios. Besides, it

can be understood from Figure 1 that for both cases, there is few diversification gain after the addition of a fifteenth asset.  

Figure 1 – Relation between portfolio mean risk and the number of assets for participants and random portfolios -

Through standard deviation of expected returns, it was found risk values for each portfolio size (from 1 to 30), for each

8



participant. The curves of this Figure represent the mean diversifying risk of participants’ portfolios (full line) and random

portfolios (dotted line), that is, each curve represents the average of 126 participants for each portfolio size.  

Regarding the risk analysis of each participant (or the individual analysis), the curves for their components may be

classified  according  to  the  form.  Curves  presented  in  this  work  may  not  be  characterized  as  “positively  inclined”,

“negatively inclined” or “not inclined”. In here, portfolios of participants were divided into four groups: Predominantly

Exponential Decline (PED), Erratic Exponential Decline (EED), Fast Decline followed by Absence of Tendency (FDAT)

and  others  (no  tendency;  decrease,  increase  and  no  tendency;  decrease,  increase  and  decrease;  exponential  decrease

followed by linear decrease; irregular convex; etc.). The classification of these curves is subjective, being this one of the

several manners of analyzing patterns of that relation for individual participants. It represents the patterns seen in relations

between  the  portfolio’s standard  deviation  and  the  number  of  assets  for  the  126 participants  who  selected  30  assets

sequentially. 

Figures 2 to 5 demonstrate examples of Figures of each group. In Figure 2, it can be seen a representation type

“Predominantly Exponential  Decline”,  which is  similar  to the exponential  decline seen for  the average  of  participants

calculated as a whole. This image does not show the suavity almost perfect of the global group, but is close to it. This type

of curve represents 43.65% of the 126 curves.  

 

Figure 2 – Predominantly Exponential Decline - The curve represents the relation between the risk and the portfolio size

of participant 31, suggesting, therefore, and individual relation, calculated by the standard deviation method of expected

returns. The curve of this participant presents a negative exponential format. 
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Figure 3 shows an Erratic Exponential Decline curve, a classification that represents 34.92% of curves. Despite

relating to studies variables exponentially, the function presents more irregularities than the predominantly exponential. 

Figure 3 -  Erratic Exponential Decline -  The curve represents the relation between the risk and the portfolio size of

participant 3, suggesting, therefore, and individual relation, calculated by the standard deviation method of expected returns.

The curve of this participant presents an erratic exponential format.

Figure 4 is a “fast decline and no tendency curve”. Almost 10% of curves are classified into this category, which

means that the portfolio risk does not depend on the number of assets that compounds it. 

Figure 4 – Fast Decline followed by Absence of Tendency -  The curve represents the relation between the risk and the

portfolio size of participant 69, suggesting, therefore, and individual relation, calculated by the standard deviation method of

expected returns. The curve of this participant presents a fast decline and, after it, shows no tendency.
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Figure 5 is an example of the “others” category, which portfolio risk may have several behavior less frequent for

this sample. I this group there was many profiles, such as “no tendency” or “irregular convex”, for example.  

Figure 5 - Others - The curve represents the relation between the risk and the portfolio size of participant 121, suggesting,

therefore, and individual relation, calculated by the standard deviation method of expected returns. The curve related to this

participant shows a low frequency format. 

Table 1 represents the results of portfolio classification of participants. In it, in less than half (43.65%) of cases, the

relation between portfolio size and its risk is classified as “Predominantly Exponential Decline”, which is the classification

that fits the most the pattern for all grouped participants and is the expected result for the grouped case. In approximately

one third of cases (43.92%), curves may be characterized as “Erratic Exponential Decline”. The third group with high

frequency is the “Fast Decline followed by Absence of Tendency”, with 9.52%. The group “Others” represents 11.90% of

cases. Thus, curves that are not in accordance with the expected pattern totalize 56.34% (34.92% + 9.52% + 11.90%) of

participants’ curves.
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Table 1 – Classification of individual participants’ curve formats  -  Classifications represent patterns seen between

standard deviation and share number from the 126 participants, who chose 30 shares sequentially. Returns are daily based,

considering a period of five years prior to this study. 

  

Classification Quantity of participants Percentages

PED 55 43.65

EED 44 34.92

FDAT 12 9.52

Others 15 11.90

Total 126 100

Certainly the groupings are a bit arbitrary, but they show that irregular patterns that do not follow the norm are not

uncommon. For obtaining a more objective measure of the curves behavior, another frequently used procedure was used for

the present research. A curve will be adjusted representing the exponential decline for each participant through the following

relation:  

s p
❑(n )=α+β ( 1n )+ε n           (6)

That is, the standard deviation (or risk) of the portfolio ( s p
❑(n )¿  is receded by the inverse of shares number (

( 1n )¿ . This regression was estimated for each of the 126 real participants and for each of the 126 randomly generated

by the software. Each individual regression was done considering that the dependent variable “standard deviation (or risk)

of the portfolio” is a function of the independent variable ( 1n ) , where n is the number of shares. From equation 5, values

were obtained referring to risk for each portfolio size (from 1 to 30). Thus, each regression was done using 30 observations.
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The independent variable ( 1n )  derives from the naive strategy and represents the simplicistic rule of a investor

who diversifies his investments in proportion ( 1n ) , that is, quantities of the invested assets are equal or present the same

ponderation. Joint regressions (one concerning the participants and another, the random portfolios) were done considering

the dependent variance as being the mean standard deviations (or risks) of the 126 individual cases. 

The independent variable, as in cases of individual regressions, is the inverse of shares number that compose the

portfolio ( 1n ) .  Descriptive statistics on the estimative of parameters are given in Table 2. In it, it is no surprisingly seen

that Alphas are highly significative, resulting from the simple fact that the standard deviation of a portfolio with an infinite

number of securities is clearly different than zero. Independently of the assets that compose the portfolio, the risk inherent to

the speculative activity is positive for both cases (participants and random portfolios).

Beta analysis is very important once it indicates if there is relation between the inverse of assets numbers and the

portfolio risk. When there is this relation, Beta also indicates its level (by the curve inclination), that is, suggests is the risk

is flexible or not. Betas tend to present quite high t-statistics and few are not positively significative. Thus, the regression

variable explains in most of cases the regressor variable. As an example, only 5 from the 126 cases of participants are not

significative and none is negatively significant – in contrast of the 16 cases not significative and 3 negative significances

from the random portfolios. 

The  mean  R2 (from  all  individual  cases)  is  around  62%  and  46%  for  participants  and  random  portfolios,

respectively. However, when R2 generated by group regression (or joint) is  compared,  the determination coefficient  of

random portfolios is superior to the participants’ (88% against 75%). It means that for the average matter, random portfolios

have a higher prevision power than participants’ portfolio. 

Table 2 – Statistics on the portfolio variance regression in  ( 1n )  function, where n is the number of assets per

participant and random portfolio - Returns have a daily basis, considering the period of 2007 to 2012. Joint regressions

(or of group) are grouped throughout time. In case of individual regressions, there are 30 observations of each of the 126
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participants. The regression number is the number of participants, that is, 126. Thus, the results’ average of alpha, beta, etc,

is obtained. Joint regressions use 126 participants times 30 = 3780 observation portfolios. 

      

Results of Regression

Participants Random

Individuals Group Individuals Group

Regressions 126 1 126 1

Alpha 3.90 2.99 3.51 2.76

Standard Deviation of Alpha 0.14 0.11 0.14 0.07

t (Alpha) 32.64 31.71 31.47 41.03

Beta 5.01 6.03 3.34 4.24

Standard Deviation of Beta 0.60 0.50 0.59 0.29

T (Beta) 9.75 16.02 7.58 14.61

Significative and positive Beta 110 1 90 1

Beta not significative 15 0 28 0

Significative and negative Beta 1 0 8 0

R² 0.62 0.75  0.46 0.88

 As for the random portfolios, it is seen that more than half of cases (52.38%) R 2 values are higher than 60%. It

means that the portfolio risk variability is less explained by the inverse of asset numbers’ variability than the participants’’

case. Thus, while many regressions adjust themselves to data, less than half of cases fit perfectly to the yield exponential

model.  Random portfolios  show  a  tendency a  bit  lower  to  adjust  to  the  yield  curve,  once  107  individual  cases  are

significantly positive, vis-à-vis 121 of participants’ portfolios. Portfolios of participants contain fewer regressions with low

R2, as an example, 7.14% of R2 lower than 20%, when for the random portfolios there were 22.22% shorter than 20%.

In general, it is seen that random portfolios better distribute the frequency of R2 values. It must be considered that

participants, presenting different levels of risk dislike, consequently choose portfolios with different risk levels. Grouping

them is an issue, once the variance of a dependent variable is not constant throughout the sample. It can be concluded then

that participants’ portfolios do not fit into the relation hypothesis, considering that one of the prior requirements for the

application of this model does not work. 

For keeping the analysis between risk and share number, it is examined how the risk changes when a share is

added. Table 4 informs the percentage of times in where the addition of a single share increases risk. In the left column there

are numbers from 2 to 30, representing the number of assets after the addition of an asset into the portfolio (in a minimum

size of one). Percentage is the proportion of times (in which the 126 participants and their correspondents from random

portfolios) that a portfolio size n has a higher risk of a portfolio size n-1. Thus, in the first line, it is seen that when a second

asset is added, around 18% of participants’ portfolios increases their risk, while 27% of random portfolios also do so. When

14



a  third  share  is  added,  around  14% of  portfolios  raise  their  risk,  and  around  34% of  random portfolios  follow  this

movement. While a fourth share is added, around 24% of portfolios raise their risk, against 24% of random portfolios. 

Some of these results must not be that surprising. As an example, if the first chosen share is a too low-risk asset, it

is not hard to imagine that a second asset may increase the global risk of the portfolio. Analyzing the bottom part of Table 4,

however, it is seen that the addition of a thirtieth share raises the risk in 26.19% of participants’ portfolios and around

45.24% of random portfolios. Among 20 to 30 shares, the percentage of participants’ portfolios which risk is raised remains

reasonable consistent among 25.40% and 37.30%, but the random portfolios case shows a similar variation, although in a

higher level, with percentages ranging from 33.33% to 45.24%.

When analyzed in parts, results found in Table 3 present: the addition of the second up to the eleventh share, the

participants’ mean is 23.81% diversification, while the random group is 31.75%; from the addition of the twelfth up to the

twenty first share, the averages are 24.20% and 39.68%, respectively; from the twenty second to the thirtieth, 27.78% and

42.86%. It is noted that the diversification “diversifies” more frequently in cases of random portfolios, besides occurring

with more frequency in larger portfolios for both groups. 

The portfolio size average for all groups is 25.12% for participants. It means that the addition of a single share

raises the risk for participants, in average, one in every four times. For the random portfolios, risk raises in 36.95% of times.

For  all  portfolio  sizes,  the  frequency  of  risk  raise  of  random  portfolios  is  higher  than  the  participants.  Apparently,

participants  knew how  to  combine  shares  to  compose  their  portfolios  better  than  the  computer  (randomly).  In  some

situations, the diversification difference was 20% more for random portfolios. These results show two interesting points.

The first refers to the number of times in that the addition of a single share raises the risk, a particularly notable result for

large portfolios, as the ones containing more than 20 shares. The second point is that for portfolios selected randomly,

results are the worst. 

A portfolio containing more than 29 shares selected by participants raises the risk with the addition of a thirtieth

share almost 26.19% of times, and a portfolio of 29 shares selected by a number generator raises the risk, with the addition

of  a  30th share,  45.24%  of  times.  There  is,  certainly,  more  random noise  than  the  probably  known  in  prior  studies.

Computers make a slightly better job than people, but not much. Results from Table 3 reflect only the addition of a single

share, which may be a higher risk than the combined risk of shares that were already in the portfolio. Adding multiple assets

may reduce the noise related to the addition of a single share (which could have raised the idiosyncratic risk), according to

Chance, Shynkevich and Yang (2011).  
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Table 3 – Frequency of the risk raise deriving from the addition of a share in a portfolio, according to participants

and the random portfolios  - Percentage values represent the relative frequency of diversification, that is, risk raise when

the number of shares composing the portfolio also rises. Column “Number of Shares” represents the portfolio size after the

addition of one share. 

 Percentage

Number of Shares Participants Random

2 18.25 34.92

3 14.29 38.10

4 23.81 32.54

5 16.67 25.40

... ... ...

26 27.78 36.51

27 30.16 38.10

28 37.30 43.65

29 26.19 44.44

30 26.19 45.24

Average 25.12 36.95

 

  Table 4 relates results linked to the addition of several  shares.  Columns identified as 1, 5, 10, 15, 20 and 25

represent the reference number of securities. Lines identified as 5, 10, 15, 20, 25 and 30 are the final number of assets. Thus,

in column 10 with line 25 it is presented a percentage of 3.97%. It means that when adding 15 shares into a portfolio that

already has 10 (totalizing, then, 25) the resulting portfolio risk rose in almost 4% of cases.  

It is verified that for participants, a portfolio of 30 shares has a higher risk than a portfolio size 1, around 2.38% of

times. Said in other words, the risk has risen a bit more than 2% of the times when 29 shares were added in a portfolio.

Random portfolios represent 11.11% of times, what means that little more than one in ten cases, the addition of 29 shares

into a portfolio of a single share is un-diversified. Once again, it seems that participants have combined assets better than

random portfolios. 

Table 4 – Frequency of the risk raise derived from the multiple addition of shares in the portfolio, according to

participants and random portfolios - Numbers represent the percentage of times in which a portfolio containing a number

of assets presented in the columns has a higher risk than a portfolio which contains a number of assets presented in the lines.

       

Number of Assets

Number of Assets 1 5 10 15 20 25
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Pannel A: Portfolios of Participants       

5 13.49 NA NA NA NA NA

10 4.76 15.87 NA NA NA NA

15 3.17 8.73 10.32 NA NA NA

20 3.17 5.56 4.76 17.46 NA NA

25 2.38 3.97 3.97 12.70 21.43 NA

30 2.38 3.17 1.59 9.52 15.87 22.22

Pannel B: Random Portfolios       

5 23.02 NA NA NA NA NA

10 16.67 15.87 NA NA NA NA

15 13.49 10.32 18.25 NA NA NA

20 10.32 10.32 18.25 34.13 NA NA

25 10.32 9.52 18.25 30.16 35.71 NA

30 11.11 10.32 16.67 27.78 28.57 30.16

Analyzing the column named “1”, it is seen a significant difference between participants and random groups, what

means that the addition of shares in a portfolio increases the risk more frequently in cases of random portfolios than of

participants. The performance of random portfolios is still worse when the reference is a portfolio of fifteen shares. In this

case, the risk raise of random portfolios is at least twice than the participants’. Then, again, a significative percentage of

individuals, when forming their portfolios based on the naïve strategy, diversify when adding shares. For random portfolios,

results are worse. 

When people do not diversify as well as computers, results are normally linked to the lack of randomness. That is,

portfolios  may not  have  represented  a  wide  range  of  industries,  and  may have  offered  subtle  biases.  Even  said  to  a

participant to choose from all shares, he would tend to choose those more familiar. Familiarity may arise from current of

past employers, friends or relatives, from the exposition of a company by regular consumers, or simply seeing a company in

a daily route. Companies with strong local exposition may also generate a bias in a participant. In the case of students from

UFRN, as an example, the five most chosen companies had a productive unit in the state of Rio Grande do Norte. 

It was also investigated if selections have presented a more subtle bias. The opportunity set was presented in a form

of list, alphabetically in an Excel sheet. With around 70 company names, participants did not have a long list of assets to

choose from. From Table 5, it is possible to realize that there is no concentration on choosing shares according to the

company’s position in the list given with the questionnaire. It means that there is no evidence that a participant would be

lazy and would have picket companies from the beginning of the list, for example.

Table 5 – Choice analysis of share according to the position in the list - Values are absolute frequencies of share choices

initiating with a certain letter.
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Shares A to E F to J K to P R to U V to Z Total

Number of listed shares 31 8 15 13 3 70

Number of times that the share was chosen 1524 472 864 611 289 3760

Proportion (%) 49.16 59 57.60 47 96.33  

One of the main differences between participants and random portfolios is in the general risk level. It means that

functions that give a relation type between the risk and the number of shares (for the grouped case) when participants and

random portfolios are bought, have similar behaviors. What differs them is the risk volume and not the manner as the risk

decreases. 

For comparing the risk level in both cases and for each portfolio size, it is needed a statistical test. The first step

consists in knowing if data have a normal distribution or not. For that, the Shapiro test for Normality was performed. As p-

values of both groups are inferior to the significance level  of 5%, the hypothesis of following a normal distribution is

rejected. As data does not follow Gaussian distribution, it is recommended the use of a non-parametric test, as for example,

the Wilcoxon. 

Afterward,  with  the  use  of  portfolio  variance  and  the  mean  variance  of  shares,  normalized  variances  were

calculated for each group. For Goetzmann and Kumar (2008), the normalized variance is the variance of a portfolio divided

by the mean variance of shares composing a portfolio.  The low normalized variance indicates that  the assets are well

diversified.  The  percentage  difference  in  normalized  variance  of  participants’ portfolios  in  relation  to  the  normalized

variance of random portfolios is the excess of normalized variance. The average for all participants, for each portfolio size,

this average gives the excessive normalized variance, where a high value indicates that participants’ portfolios are more

diversified than random portfolios. 

The large bias, however, could be more subtle. When participants add shares, they are able to choose assets of

strong correlation to their existing portfolios. It was calculated then the correlation between return of a size n portfolio and

the next asset to be added (that will compose the n+1 portfolio). Table 6 presents this information that shows the mean

correlation between different size portfolios and the percentage of times in where the correlation is positive. 

In more than 70% of cases for participants and random portfolios, the correlation is positive. However, the mean

correlation is notably more elevated for participants’ portfolios than for random portfolios, a result that does not vary much

for different sizes. Analyzing the group of participants in Table 6, it is seen that when the portfolio present a single asset, its

correlation with the next asset to be added is, in average, 40% - a moderate correlation. Still considering the single asset

portfolio, it  was noted that values of this correlation, when analyzed case by case, (that is, for each participant), were

positive in 78.47% of times. Random portfolios, for the same portfolio size, shower a mean correlation of 26% and the
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correlation was higher than zero in 72.22% of cases. For most of portfolio sizes, the mean correlation of participants’

portfolio was higher than the random portfolios. The same result is found when the frequency of positive correlations for

each group is compared. It may mean that participants have chosen more associating shares. 

Table 6 – Correlations of existing portfolios in relation to the marginal asset, according to the participants’ portfolios

and random portfolios - For an n size portfolio, the correlation between the n portfolio return and the return of the asset to

be added into the portfolio n+1. Besides, it is seen the amount of times in where correlation in each line are positive. 

         

Portfolios of Participants Random Portfolios

Portfolio Size Mean Correlation  % > 0  Mean Correlation  % > 0

1 0.40 78.57 0.26 72.22

2 0.37 80.95 0.34 77.78

3 0.45 84.92 0.34 84.92

4 0.45 88.89 0.40 82.54

5 0.39 80.16 0.39 78.57

6 0.43 90.48 0.42 85.71

7 0.44 89.68 0.35 80.16

8 0.43 89.68 0.43 87.30

9 0.42 87.30 0.39 81.75

10 0.50 94.44 0.44 88.89

11 0.40 84.13 0.44 88.10

12 0.40 87.30 0.39 84.92

13 0.44 89.68 0.42 87.30

14 0.43 89.68 0.46 92.06

15 0.47 93.65 0.46 92.86

16 0.46 93.65 0.48 92.06

17 0.45 89.68 0.45 87.30

18 0.47 91.27 0.49 94.44

19 0.46 95.24 0.48 91.27

20 0.51 96.03 0.48 94.44

21 0.43 89.68 0.42 87.30

22 0.44 91.27 0.45 93.65

23 0.46 94.44 0.48 92.86

24 0.47 92.86 0.47 89.68

25 0.42 94.44 0.45 92.86

26 0.49 90.48 0.49 94.44

27 0.48 91.27 0.50 96.03

28 0.47 94.44 0.48 93.65

29  0.43  90.48  0.51  97.62
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Conclusions

People select portfolios by an inconsistent bias. They tend to choose full-sized companies, well known and more correlated

to their existing portfolio than the share that may be chosen randomly. Thus, when people try to diversify choosing shares

randomly, a subtle bias is set, what may limit their capacity of diversifying with a relatively small number of shares. The

negative exponential relation, as documented by  Chance, Skynkevich & Yang (2011), occurs in average, but not for most of

individuals, who “undiversify” when adding shares. The choice of few shares only diversify a portfolio in a wide sample,

and it may not apply to every person. Individual bias must be considered do determine optimal portfolio size.
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